Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.297
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608490

RESUMO

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilação , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular , Células HL-60 , Linhagem Celular Tumoral
2.
PLoS One ; 19(4): e0301447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557762

RESUMO

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Assuntos
Furilfuramida , Tretinoína , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Ligantes , Tretinoína/farmacologia , Tretinoína/metabolismo , Epiderme/metabolismo , Receptores Citoplasmáticos e Nucleares
3.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
4.
Sci Rep ; 14(1): 7411, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548913

RESUMO

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.


Assuntos
Neuroblastoma , Tretinoína , Humanos , Tretinoína/farmacologia , Tretinoína/metabolismo , Floxuridina , Fosforilação Oxidativa , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Diferenciação Celular
5.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503350

RESUMO

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Assuntos
Acetatos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Éteres Difenil Halogenados , Fenóis , Células de Sertoli , Camundongos , Animais , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Testículo/metabolismo , Espermatogônias , Espermatogênese , Tretinoína/metabolismo , Tretinoína/farmacologia
6.
Methods Mol Biol ; 2754: 521-532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512687

RESUMO

Pathological alterations of the neuronal Tau protein are characteristic for many neurodegenerative diseases, called tauopathies. To investigate the underlying mechanisms of tauopathies, human neuronal cell models are required to study Tau physiology and pathology in vitro. Primary rodent neurons are an often used model for studying Tau, but rodent Tau differs in sequence, splicing, and aggregation propensity, and rodent neuronal physiology cannot be compared to humans. Human-induced pluripotent stem cell (hiPSC)-derived neurons are expensive and time-consuming. Therefore, the human neuroblastoma SH-SY5Y cell line is a commonly used cell model in neuroscience as it combines convenient handling and low costs with the advantages of human-derived cells. Since naïve SH-SY5Y cells show little similarity to human neurons and almost no Tau expression, differentiation is necessary to obtain human-like neurons for studying Tau protein-related aspects of health and disease. As they express in principle all six Tau isoforms seen in the human brain, differentiated SH-SY5Y-derived neurons are suitable for investigating the human microtubule-associated protein Tau and, for example, its sorting and trafficking. Here, we describe and discuss a general cultivation procedure as well as four differentiation methods to obtain SH-SY5Y-derived neurons resembling noradrenergic, dopaminergic, and cholinergic properties, based on the treatment with retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and 12-O-tetrade canoylphorbol-13-acetate (TPA). TPA and RA-/TPA-based protocols achieve differentiation efficiencies of 40-50% after 9 days of treatment. The highest differentiation efficiency (~75%) is accomplished by a combination of RA and BDNF; treatment only with RA is the most time-efficient method as ~50% differentiated cells can be obtained already after 7 days.


Assuntos
Neuroblastoma , Tauopatias , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Tauopatias/metabolismo
7.
Int Immunopharmacol ; 130: 111772, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432148

RESUMO

Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.


Assuntos
Benzoatos , NF-kappa B , Complicações Cognitivas Pós-Operatórias , Receptor alfa de Ácido Retinoico , Tetra-Hidronaftalenos , Animais , Camundongos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Receptor alfa de Ácido Retinoico/agonistas , Transdução de Sinais , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Tretinoína/farmacologia
8.
J Cell Mol Med ; 28(7): e18205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506089

RESUMO

Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/ß-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.


Assuntos
Células-Tronco Neurais , Tretinoína , Tretinoína/farmacologia , Tretinoína/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
9.
Drug Metab Dispos ; 52(5): 442-454, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38485281

RESUMO

Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1ß decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.


Assuntos
Ésteres de Retinil , Vitamina A , Vitamina A/metabolismo , Vitamina A/farmacologia , Interleucina-1beta/metabolismo , Ésteres de Retinil/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo
10.
PLoS One ; 19(3): e0300072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527023

RESUMO

Stroke is a leading cause of death and long-term disability which can cause oxidative damage and inflammation of the neuronal cells. Retinoic acid is an active metabolite of vitamin A that has various beneficial effects including antioxidant and anti-inflammatory effects. In this study, we investigated whether retinoic acid modulates oxidative stress and inflammatory factors in a stroke animal model. A middle cerebral artery occlusion (MCAO) was performed on adult male rats to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the peritoneal cavity for four days before MCAO surgery. The neurobehavioral tests were carried out 24 h after MCAO and cerebral cortex tissues were collected. The cortical damage was assessed by hematoxylin-eosin staining and reactive oxygen species assay. In addition, Western blot and immunohistochemical staining were performed to investigate the activation of glial cells and inflammatory cytokines in MCAO animals. Ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) were used as markers of microglial and astrocyte activation, respectively. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were used as representative pro-inflammatory cytokines. Results showed that MCAO damage caused neurobehavioral defects and histopathological changes in the ischemic region and increased oxidative stress. Retinoic acid treatment reduced these changes caused by MCAO damage. We detected increases in Iba-1 and GFAP in MCAO animals treated with vehicle. However, retinoic acid alleviated increases in Iba-1 and GFAP caused by MCAO damage. Moreover, MCAO increased levels of nuclear factor-κB and pro-inflammatory cytokines, including TNF-α and IL-1ß. Retinoic acid alleviated the expression of these inflammatory proteins. These findings elucidate that retinoic acid regulates microglia and astrocyte activation and modulates pro-inflammatory cytokines. Therefore, this study suggests that retinoic acid exhibits strong antioxidant and anti-inflammatory properties by reducing oxidative stress, inhibiting neuroglia cell activation, and preventing the increase of pro-inflammatory cytokines in a cerebral ischemia.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neuroglia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
11.
Cell Rep ; 43(3): 113939, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493476

RESUMO

Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.


Assuntos
Leucemia Mieloide Aguda , Tretinoína , Humanos , Diferenciação Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo
12.
BMC Genomics ; 25(1): 244, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443816

RESUMO

BACKGROUND: Vitamin A and retinoic acid (RA, a metabolite of vitamin A), are inextricably involved to the development of skeletal muscle in animals. However, the mechanisms regulating skeletal muscle development by vitamin A remain poorly reported. The current study designed to investigate the underlying mechanism of vitamin A affecting myogenic differentiation of lamb myoblasts through transcriptome sequencing (RNA-Seq) and gene function validation experiments. It provides a theoretical basis for elucidating the regulation of vitamin A on skeletal muscle development as well as for improving the economic benefits of the mutton sheep industry. RESULTS: Newborn lambs were injected with 7,500 IU vitamin A, and longissimus dorsi (LD) muscle tissue was surgically sampled for RNA-Seq analysis and primary myoblasts isolation at 3 weeks of age. The results showed that a total of 14 down-regulated and 3 up-regulated genes, were identified between control and vitamin A groups. Among them, BHLHE40 expression was upregulated in vitamin A group lambs. Furthermore, BHLHE40 expression is significantly increased after initiation of differentiation in myoblasts, and RA addition during differentiation greatly promoted BHLHE40 mRNA expression. In vitro, RA inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation through BHLHE40. Moreover, BHLHE40 was proved to inhibit the expression of the DNA binding inhibitor 3 (ID3), and meanwhile, ID3 could effectively promote myoblasts proliferation and inhibit myoblasts myogenic differentiation. CONCLUSIONS: Taken together, our results suggested that vitamin A inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation by inhibiting ID3 expression through BHLHE40.


Assuntos
Tretinoína , Vitamina A , Animais , Ovinos , Vitamina A/farmacologia , Tretinoína/farmacologia , Desenvolvimento Muscular , Mioblastos , Músculos Paraespinais
13.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
14.
J Autoimmun ; 144: 103174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377868

RESUMO

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Camundongos , Animais , Lipossomos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Autoantígenos/metabolismo , Adjuvantes Imunológicos , Imunização , Vacinação , Fenótipo , Camundongos Endogâmicos C57BL , Células Th1
15.
BMC Cancer ; 24(1): 203, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350880

RESUMO

BACKGROUND: Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS: We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS: The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS: Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.


Assuntos
Mesotelioma , Tretinoína , Humanos , Animais , Camundongos , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Ciclofosfamida , Linfócitos T CD8-Positivos , Terapia Combinada , Mesotelioma/tratamento farmacológico , Microambiente Tumoral
16.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321954

RESUMO

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Assuntos
Cromatina , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Tretinoína , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Epigenoma , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos dos fármacos
17.
Sci Rep ; 14(1): 2696, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302538

RESUMO

Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.


Assuntos
Benzoatos , Cartilagem Articular , Osteoartrite , Células-Tronco Pluripotentes , Retinoides , Humanos , Condrócitos/metabolismo , Tretinoína/farmacologia , Condrogênese/genética , Diferenciação Celular , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Osteoartrite/metabolismo
18.
Int J Nanomedicine ; 19: 1749-1766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414527

RESUMO

Purpose: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. However, the effect of current treatment strategies by inducing tumor cell apoptosis alone is not satisfactory. The growth, metastasis and treatment sensitivity of tumors can be strongly influenced by cancer-associated fibroblasts (CAFs) in the microenvironment. Effective cancer therapies may need to target not only the tumor cells directly but also the CAFs that protect them. Methods: Celastrol and small-sized micelles containing betulinic acid were co-encapsulated into liposomes using the thin-film hydration method (CL@BM). Folic acid was further introduced to modify liposomes as the targeting moiety (F/CL@BM). We established a novel NIH3T3+4T1 co-culture model to mimic the tumor microenvironment and assessed the nanocarrier's inhibitory effects on CAFs-induced drug resistance and migration in the co-culture model. The in vivo biological distribution, fluorescence imaging, biological safety evaluation, and combined therapeutic effect evaluation of the nanocarrier were carried out based on a triple-negative breast cancer model. Results: In the present study, a novel multifunctional nano-formulation was designed by combining the advantages of sequential release, co-loading of tretinoin and betulinic acid, and folic acid-mediated active targeting. As expected, the nano-formulation exhibited enhanced cytotoxicity in different cellular models and effectively increased drug accumulation at the tumor site by disrupting the cellular barrier composed of CAFs by tretinoin. Notably, the co-loaded nano-formulations proved to be more potent in inhibiting tumor growth in mice and also showed better anti-metastatic effects in lung metastasis models compared to the formulations with either drug alone. This novel drug delivery system has the potential to be used to develop more effective cancer therapies. Conclusion: Targeting CAFs with celastrol sensitizes tumor cells to chemotherapy, increasing the efficacy of betulinic acid. The combination of drugs targeting tumor cells and CAFs may lead to more effective therapies against various cancers.


Assuntos
Fibroblastos Associados a Câncer , Triterpenos Pentacíclicos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Lipossomos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Células NIH 3T3 , Ácido Betulínico , Tretinoína/farmacologia , Ácido Fólico/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377195

RESUMO

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Assuntos
Proteínas de Ligação a DNA , Proteínas Repressoras , Humanos , Feminino , Masculino , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Correpressoras/genética , Correpressor 2 de Receptor Nuclear/genética , Tretinoína/farmacologia , Anticoncepção , Correpressor 1 de Receptor Nuclear
20.
Nat Commun ; 15(1): 1423, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365836

RESUMO

Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...